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Pharmacokinetic parameters can be significantly altered for both extracorporeal life support (ECLS) and 
continuous renal replacement therapy (CRRT). This case report describes the pharmacokinetics of continuous-
infusion meropenem in a patient on ECLS with concurrent CRRT. A 2.8-kg, 10-day-old, full-term neonate born 
via spontaneous vaginal delivery presented with hypothermia, lethargy, and a ~500-g weight loss from birth. 
She progressed to respiratory failure on hospital day 2 (HD 2) and developed sepsis, disseminated intravas-
cular coagulation, and liver failure as a result of disseminated adenoviral infection. By HD 6, acute kidney 
injury was evident, with progressive fluid overload >1500 mL (+) for the admission. On HD 6 venoarterial 
ECLS was instituted for lung protection and fluid removal. On HD 7 she was initiated on CRRT. On HD 12, a 
blood culture returned positive and subsequently grew Pseudomonas aeruginosa with a minimum inhibi-
tory concentration (MIC) for meropenem of 0.25 mg/L. She was started on vancomycin, meropenem, and 
amikacin. A meropenem bolus of 40 mg/kg was given, followed by a continuous infusion of 10 mg/kg/hr 
(240 mg/kg/day). On HD 15 (ECLS day 9) a meropenem serum concentration of 21 mcg/mL was obtained, 
corresponding to a clearance of 7.9 mL/kg/min. Repeat cultures from HDs 13 to 15 (ECLS days 7-9) were 
sterile. This meropenem regimen was successful in providing a target attainment of 100% for serum con-
centrations above the MIC for ≥40% of the dosing interval and was associated with a sterilization of blood 
in this complex patient on concurrent ECLS and CRRT circuits.
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INTRODUCTION

Pharmacokinetic parameters, such as the vol-
ume of distribution (Vd) and clearance (CL), can 
be significantly altered for individuals receiving 
extracorporeal life support (ECLS) in addition to 
continuous renal replacement therapy (CRRT). 
Pharmacokinetics and pharmacodynamics are 
important considerations when treating any 
infection.1 Most antimicrobial dosing recommen-
dations are derived from healthy volunteers and 
do not account for known pharmacokinetic and 
pharmacodynamic changes occurring in an adult 
or pediatric intensive care unit (ICU) setting.2–6 
Further, use of extracorporeal membrane oxygen-
ation (ECMO) to provide ECLS can dramatically 

alter antimicrobial concentrations, as can CRRT.7–10

For β-lactam antibiotics like meropenem, there 
is a direct relationship between the time that free 
drug concentrations remain above the minimum 
inhibitory concentration (MIC) at the site of infec-
tion—referred to as %fT>MIC—and the killing 
of bacteria.11–13 Ideally, the free drug concentra-
tion should be about 4 to 6 times the MIC for a 
duration of at least 40% of the dosing interval, 
depending on the specific β-lactam being used.11–13 
Most of the meropenem pharmacokinetic data in 
children are limited to healthy volunteers or non-
ICU patients. The available pharmacokinetic data 
for pediatric ICU patients demonstrate a faster CL 
and larger volume of distribution.3,14 Additionally, 
there is a single report on pharmacokinetic data 
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for meropenem in a pediatric patient in the set-
ting of ECLS.15 The purpose of this case report is 
to describe the pharmacokinetics of a meropenem 
continuous infusion in a neonate receiving con-
current ECLS and CRRT. The Drexel University 
College of Medicine Institutional Review Board 
approved this case report.

CASE REPORT

Clinical Course
A 2.8-kg, 10-day-old, full-term female neonate 

born via spontaneous vaginal delivery presented 
to her primary care physician on the day of ad-
mission for a routine visit. Her parents reported 
poor feeding with a 500-g weight loss. She was 
noted to be hypothermic and lethargic. She was 
transferred to St. Christopher’s Hospital for Chil-
dren because of a concern for a serious bacterial 
infection. Upon admission, a nasopharyngeal 
specimen sent for reverse transcriptase–poly-
merase chain reaction test returned positive for 
adenovirus. Her respiratory status worsened, 
with progression to respiratory failure on hos-
pital day 2 (HD 2). She developed multiorgan 
dysfunction with septic shock, disseminated in-
travascular coagulation, acute kidney injury, and 
liver failure as a result of disseminated adenovi-
ral infection. By the sixth day of hospitalization, 
her fluid balance was >1500 mL positive since 
admission. She deteriorated further that evening, 
requiring ECLS for lung protection. The follow-
ing morning CRRT was initiated. On day 12, a 
blood culture returned positive, which was em-
pirically treated with vancomycin, meropenem, 
and amikacin. Meropenem was started with a 40 
mg/kg bolus given over 30 minutes, followed 
by a continuous infusion of 10 mg/kg/hr (240 
mg/kg/day). The blood culture subsequently 
grew Pseudomonas aeruginosa with a meropenem 
MIC of 0.25 mcg/mL. Within 48 hours, after full 
organism identification, the vancomycin was 
discontinued. On day 15 of hospitalization (ECLS 
day 9) a meropenem serum concentration of 21 
mg/L was obtained, corresponding to a CL of 7.9 
mL/kg/min, which provided a 100% fT>MIC. At 
the time the meropenem serum concentration as 
obtained the CRRT modality was hemodiafiltra-
tion and the prescription included a dialysate 
flow rate of 200 mL/hr, a pre–blood pump flow 
rate of 250 mL/hr, a post–blood pump flow rate 
of 50 mL/hr, and a blood flow rate of 50 mL/

min. These CRRT settings were at steady and un-
changed for the 36 hours prior to the meropenem 
concentration being obtained, and the ECMO 
settings were unchanged for 22 hours prior to 
the meropenem concentration being obtained. 
For the 3 days prior to the meropenem concen-
tration being obtained, the urine output was 0, 
0, and 8 mL per day, with an ultrafiltration rate 
that ranged from 0 to 40 mL/hr for the 72 hours 
preceding the meropenem concentration. Repeat 
blood cultures from days 13 through 15 were ster-
ile. There was only 1 circuit change done on day 
14 for the CRRT circuitry, and the ECLS circuit 
was not changed for the entire duration of the 
ECLS run. The continuous infusion meropenem 
continued through day 15, when technologic 
support was removed as a result of a grade IV 
intraventricular hemorrhage.

Drug Dosing and Samples
Meropenem bolus (40 mg/kg) was infused 

over 30 minutes and was followed by a continu-
ous infusion of 10 mg/kg/hr (240 mg/kg/day). 
The meropenem concentration was 40 mg/mL, 
and the diluent was normal saline. The continu-
ous infusion was administered for 8 hours, and 
the syringe was changed every 8 hours due 
to the limited stability of meropenem at room 
temperature at 40 mg/mL. While on ECLS and 
CRRT support, a meropenem serum concentra-
tion was obtained 72 hours after the start of the 
continuous infusion.

Drug Serum Concentrations
Serum concentrations for meropenem (total 

drug) in plasma were determined by bioassay 
(using Clostridium perfringens ATCC 13124) at 
ARUP Laboratories (Salt Lake City, UT). The 
standard curve for the meropenem bioassay 
ranged from 5 to 40 mg/L, with an interday as-
say variability that was less than 15% across all 
reference samples between 5 and 40 mg/L. In 
the event samples were outside the upper limit 
of determination on the standard curve, a 1:2 
or 1:5 dilution was made until the sample was 
within the standard curve. If samples were below 
the lower limit of determination on the standard 
curve, a value of “undetectable” was reported by 
the reference laboratory.

Pharmacokinetics
The following equation was used in determin-

Continuous Infusion Meropenem With ECLS and CRRT



JPPT

94 J Pediatr Pharmacol Ther 2016 Vol. 21 No. 1 • www.jppt.org

ing patient-specific pharmacokinetic variables. 
Dose (mg/kg/hr) = Css (mg/L) * CL, where 
CL = ke (hr−1) * Vd (L/kg), where Css is the 
concentration at steady state. The %fT>MIC for 
meropenem was calculated. The probability of 
target attainment was calculated using a phar-
macodynamic target of ≥40% fT>MIC,1,13,14 and a 
value ≥90% was defined as optimal.1,16,17

ECLS Circuitry and Priming
The ECLS circuit for this patient was prepared 

using custom tubing with a 1/4-inch diameter 
and 3/32-inch thickness, made of polyvinyl-
chloride and superTygon (Medtronic Inc., Min-
neapolis, MN), and a Quadrox-iD Peds oxygen-
ator (Maquet, Rastatt, Germany). The circuit is 
crystalloid primed with Isolyte S pH 7.4 (B. Braun 
Medical Inc., Bethlehem, PA). After debubbling 
the circuit, 10 mL of 25% albumin was added 
and recirculated. The initial crystalloid/albumin 
prime was then displaced with the priming so-
lution (packed red blood cells and fresh frozen 
plasma), tromethamine, heparin, and calcium 
gluconate. The circuit pH was adjusted using 
sodium bicarbonate or tromethamine as needed 
to a range of 7.35 to 7.45. The estimated priming 
volume for the neonatal ECLS circuit was 750 mL.

CRRT Circuitry and Priming
Dialysis was performed using the Prismaflex 

System (Gambro, Baxter, Deerfield, IL). The at-
tending nephrologist prescribed the mode of 
dialysis (i.e., continuous venovenous hemofiltra-
tion or hemodiafiltration). The Prismaflex was 
initially primed with two 1-L bags of normal 
saline with 5000 units of heparin in each bag. The 
machine was then primed with a blood exchange 
(blood is transfused to the patient as the prime 
is wasted), depending on the percent extracor-
poreal volume of the patient, with a Duosol (B 
Braun Medical) dialysis solution using HF1000, 
AN69 dialysis filters.

DISCUSSION

Information is lacking regarding the impact of 
ECLS and CRRT on the pharmacokinetics and 
antimicrobial dosing requirements in neonatal 
and pediatric patients. Too commonly, typical 
antimicrobial dosing regimens are used for 
complicated, critically ill, neonatal, and pediatric 
patients. Adult data suggest variable vancomycin 

pharmacokinetics in the setting of vasoactive ad-
ministration, extrarenal CL of vancomycin, CRRT 
intensity, CRRT circuitry, and even albumin con-
centrations.8,9,18 Further, Joy and colleagues9 dem-
onstrated that escalation in CRRT intensity from 
hemofiltration to hemodiafiltration increased 
vancomycin CL by greater than or equal to 30%, 
mirroring data for other hydrophilic drugs, 
like β-lactams. We previously reported the first 
description of meropenem pharmacokinetics in 
the setting of ECLS in children15 and are unaware 
of any meropenem pharmacokinetic estimates 
with concurrent ECLS and CRRT. The calculated 
meropenem CL in the ECLS report was larger 
than the population pharmacokinetic estimates 
derived from healthy volunteers, 4.14 to 4.8 vs. 
4 mL/kg/min, a range of approximately 4% 
to 20% larger.16 We have also previously dem-
onstrated that meropenem pharmacokinetics 
in pediatric ICU patients not receiving ECLS 
are different when compared with published 
literature from which the standard meropenem 
dosing recommendations are derived.3,14 In this 
report of meropenem pharmacokinetics in the 
setting of concurrent ECLS and CRRT, the CL was 
considerably larger at 7.9 mL/kg/min. A com-
parison of meropenem CL estimates is presented 
in the Table.14,15,19 Meropenem is predominantly 
renally eliminated, with a range of 54% to 79% 
of unchanged drug recovered in the urine.19,20 
Meropenem has a small Vd estimate of ~0.4 L/
kg, minimal protein binding (<2%), and low 
molecular weight (383 Da), which are all char-
acteristics making meropenem readily removed 
by renal replacement therapies.19,20 Data suggest 
extracorporeal removal of meropenem ranging 
from 23% to 56% in adults receiving CRRT; how-
ever, there are no estimates in children receiving 
CRRT.21–27 The standard meropenem dose in a 
patient this age is 20 mg/kg per dose IV every 
8 to 12 hours. Further, Nehus et al28 conducted 
clinical trial simulations to determine dosing 
regimens in children that would provide for a 
target attainment of 40% and 75% time above 
the MIC. Simulations suggested that a dosing 
regimen of 20 mg/kg per dose IV every 8 hours 
would be sufficient to obtain the aforementioned 
target attainments for children younger than 5 
years. For Pseudomonas aeruginosa, the suscepti-
bility interpretive criteria for meropenem are as 
follows: sensitive, MIC ≤ 4 mg/L; intermediate, 
MIC = 8 mg/L; and resistant, MIC 16 ≥ mg/L.19
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Considering the infecting pathogen and MIC 
are not known when empiric therapy is initiated, 
empiric dosing regimens should be designed to 
provide for appropriate exposures in case the 
infecting pathogen is a multidrug-resistant or-
ganism. Even though the P aeruginosa MIC was 
0.25 mcg/mL for our patient, with the concern 
for dissemination to other sites, such as lung, 
bone, and even the central nervous system, the 
dosing regimen was not reduced. Further, the 
dosing regimen used in this scenario would have 
provided for an appropriate pharmacodynamics 
exposure up to the meropenem-resistant break-
point of 16 mg/L. The total effluent flow rate, 
which estimates extracorporeal CL, used for the 
simulations by Nehus and colleagues28 was 1.79 
mL/kg/min. The total CL in our patient was 
significantly higher at 7.9 mL/kg/min, demon-
strating that neither of the intermittent dosing 
regimens would have provided for an appropri-
ate pharmacodynamic exposure in our patient, 
further strengthening the argument for real-time 
therapeutic drug monitoring.

Frequently, the site of infection and ex vivo 
treatment devices are rarely considered when 
designing drug-dosing regimens, which must 
be amended as ongoing antimicrobial pharma-
cokinetic and pharmacodynamic research is con-
ducted. For example, in our patient the volume 
of blood, blood products, and drugs needed for 
the ECLS prime is approximately 1200 mL and 
for the CRRT circuit prime is approximately 2000 
mL, which dramatically increases the extracor-
poreal volume any drug needs to distribute in. 
Most of the literature describing pharmacokinetic 
differences with ECLS and CRRT are with older 
equipment and devices. This area of research 
and literature must be revised to incorporate 
contemporary devices and treatment modali-
ties. Roberts et al5 demonstrated that current 
dosing recommendations in infected critically 
ill adult patients did not provide an appropri-
ate % fT>MIC and had a negative impact on 

patient outcomes without ECLS or CRRT. In the 
setting of ECLS or CRRT, the ability to achieve 
the pharmacodymanic target % fT>MIC would 
be reduced, demonstrating that the “one dose 
fits all” theory is not appropriate. The result of 
insufficient antibiotic exposure can be severe. 
Adult data demonstrate a relationship between 
antibiotic underdosing and the development of 
antibiotic resistance.29 The link was first estab-
lished with low fluoroquinolone exposures30 and 
more recently with other antimicrobials, such 
as β-lactams.31,32 Considering that ICUs harbor 
multidrug-resistant pathogens, optimized dos-
ing regimens that minimize resistance develop-
ment should be employed to maximize patient 
outcomes. One strategy to optimize dosing regi-
mens is real-time, prospective therapeutic drug 
monitoring. This is critical because suboptimal 
anti-infective therapy is associated with worse 
outcomes.6,33–39 Systematic research using ex vivo 
circuits, large animal models, and population 
pharmacokinetic studies are indicated to improve 
antimicrobial dosing regimens and, therefore, 
patient outcomes during ECLS and CRRT.

CONCLUSION

This case report demonstrates meropenem CL 
is significantly increased, likely due to an increase 
in the Vd from ECLS and CRRT, and the elimina-
tion rate constant from CRRT in this critically ill 
neonate. Appropriate time above the MIC can 
be achieved by continuous-infusion meropenem 
with concurrent therapeutic drug monitoring.
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Table. Meropenem Pharmacokinetic Clearance Estimates for Pediatric Patients

Patient Characteristic/Data Source Clearance, mL/kg/min

Non-ICU19 4

ECLS15 4.2-4.88

ECLS with CRRT (current report) 7.9

Pediatric ICU14 10.2
CRRT, continuous renal replacement therapy; ECLS, extracorporeal life support; ICU, intensive care unit
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Abbreviations CL, clearance; CRRT, continuous renal 
replacement therapy; ECLS, extracorporeal life support; 
ECMO, extracorporeal membrane oxygenation; HD, hospi-
tal day; ICU, intensive care unit; MIC, minimum inhibitory 
concentration; Vd, volume of distribution
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